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a b s t r a c t 

The a myloid beta, t au, n eurodegenerative markers framework has been proposed to serve as a system 

to classify and combine biomarkers for Alzheimer’s Disease (AD). Although cerebrospinal (CSF) fluid AT 

(amyloid beta and tau)-based biomarkers have a well-established track record to distinguish AD from 

control subjects and to predict conversion from mild cognitive impairment (MCI) to AD, there is not an 

established non-tau based neurodegenerative (“N”) marker from CSF. Here, we examine the ability of sev- 

eral candidate peptides in the CSF to serve as “N” markers to both classify disease state and predict MCI 

to AD conversion. We observed that although many putative N markers involved in synaptic processing 

and neuroinflammation were able to, when examined in isolation, distinguish MCI converters from non- 

converters, a derivative from VGF, when combined with AT markers, most strongly enhanced prediction 

of MCI to AD conversion. Low CSF VGF levels were also predictive of MCI to dementia conversion in the 

setting of normal AT markers, suggesting that it may serve as a very early predictor of dementia conver- 

sion. Other markers derived from neuronal pentraxin 2, GAP-43 and a 14-3-3 protein were also able to 

enhance MCI to AD prediction when used as a marker of neurodegeneration, but VGF had the highest 

predictive capacity. Thus, we propose that low levels of VGF in CSF may serve as “N” in the a myloid beta, 

t au, n eurodegenerative markers framework to enhance the prediction of MCI to AD conversion. 

© 2022 Elsevier Inc. All rights reserved. 
Abbreviations: A β , amyloid beta; AD, Alzheimer Disease; BEN, Bayesian Elastic 

Net; CHI3L1, Chitinase 3 Like 1; CSF, cerebrospinal fluid; CUI, cognitively unim- 

paired; EMCI, early MCI; GAP-43, growth-associated protein-43; LMCI, late MCI; 

MCI, mild cognitive impairment; MRI, magnetic resonance imaging; NL, normal sub- 

ject; NPTX2, neuronal pentraxin-2; PET, positron-emission tomography; RLL, Resam- 

pled Logistic Lasso; RRF, Regularized Random Forests; p-tau, phosphorylated tau 

at site 181; SGB, Stochastic Gradient Boosting; SMC, subjective memory complaint; 

SPP1, Osteopontin; t-tau, total tau; YWHAZ, 14-3-3 protein zeta/delta. 
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1. Introduction 

Alzheimer’s Disease (AD) is growing in prevalence with the ag-

ing of the population. Approximately 10% of individuals over the

age of 65 meet criteria for AD, and by 2050, it is expected that 152

million individuals worldwide will have AD ( GBD Dementia Fore-

casting Collaborators, 2022 ). Although a cure for this disease does

not exist, it is likely that potential disease-modifying therapies will

have their largest impact in the earliest stages of the illness. Since

potential disease-modifying therapies, such as amyloid reduction

approaches, may carry risks, it is imperative that we have tools to
A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/ 

wp-content/uploads/how _ to _ apply/ADNI _ Acknowledgement _ List.pdf . 

https://doi.org/10.1016/j.neurobiolaging.2022.07.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuaging.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neurobiolaging.2022.07.015&domain=pdf
mailto:d-llano@illinois.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.1016/j.neurobiolaging.2022.07.015
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identify and select individuals at the earliest stages of this illness

with the highest likelihood for progression so that we can provide

such therapeutic interventions to those with the highest capacity

to benefit. 

To that end, multiple biomarkers have been proposed as strat-

ification tools for AD. Recently, a framework has been proposed

to classify and combine biomarkers, known as the “ATN” frame-

work ( Jack et al., 2018 ; Jack et al., 2016 ). In this system, “A” cor-

responds to markers of amyloid beta (A β) deposition, such as ac-

cumulation of A β-binding radioligand on a PET scan or depressed

levels of various A β species in cerebrospinal fluid (CSF). “T” cor-

responds to accumulation of various species of tau protein, com-

monly measured as tau-binding radioligand on a positron-emission

tomography (PET) scan or elevation of phosphorylated tau in CSF. It

is well established that, although most AD patients express abnor-

malities in both A β and tau, A and T are not redundant markers,

and their levels can be combined to provide enhanced detection of

AD and prediction of conversion from mild cognitive impairment

(MCI) to AD. “N” corresponds to markers of neurodegeneration. The

most common metric of neurodegeneration is regional brain atro-

phy, typically of the hippocampus or CSF total tau. Again, though

most AD patients have abnormalities in all of these markers, they

are not entirely overlapping, thus can be combined (A + T + N) to

provide additional power to detect the earliest stages of AD pathol-

ogy. 

Unfortunately, except in the case of using CSF total tau as

a marker of neurodegeneration (addressed below), current ap-

proaches to measure A + T + N require multimodality and expensive

technology to measure all of these markers. For example, an in-

dividual would need to undergo CSF analysis + quantitative high

resolution MRI, or high resolution structural MRI + amyloid + tau

PET scans (both of which are not yet covered by most U.S. insur-

ers) to have all 3 markers quantified. Thus, identification of an ad-

ditional “N” marker in the CSF, to be combined with AT would

mark a significant advancement, and would expose the patient to

a single relatively inexpensive test to classify patients and to as-

sess their risk for progression from MCI to AD. We have previ-

ously demonstrated that novel CSF peptide markers of neurode-

generation, either on their own or when combined with CSF amy-

loid/tau markers within the ATN framework, have significant di-

agnostic and prognostic utility in AD diagnosis and progression

( Devanarayan et al., 2019 ; Llano et al., 2017 ; Llano et al., 2019 ).

In addition, recent data from specific peptide sequences/forms of

5 proteins (Chitinase 3 Like 1, Neuronal Pentraxin-2, Osteopontin,

VGF, and 14-3-3 protein zeta/delta) using targeted proteomics by

mass spectrometry in CSF were made available for 719 subjects

in the ADNI database ( Watson et al., 2021 ). These proteins were

previously identified by integrative proteomics as brain-based CSF

biomarkers modulated in patients with AD ( Higginbotham et al.,

2020 ). In our own prior work cited above, we reported other pep-

tide sequences of VGF and a peptide from a protein that is closely

related to neuronal pentraxin 2 (the neuronal pentraxin receptor,

NPTXR) to be highly significant and predictive markers of AD di-

agnosis and progression ( Devanarayan et al., 2019 ; Llano et al.,

2019 ). 

Thus, in this report, we study the potential utility of these pro-

teins in their specific peptide forms for AD diagnosis and progres-

sion via machine-learning algorithms in a novel patient population

compared to previous analyses. In this analysis, we also include

data from the full protein form of growth associated protein-43

(GAP-43) on these same Alzheimer’s Disease Neuroimaging Initia-

tive (ADNI) subjects (data made available by Sandelius et al., 2019 )

as it has been reported to be specific to AD and associated with

tau and amyloid pathology ( Sandelius et al., 2019 ). We study the

collective utility of these 6 proteins, both on their own and in com-
bination with CSF amyloid/tau markers, within the ATN framework

( Jack et al., 2018 ; Jack et al., 2016 ) to both classify disease state and

predict conversion from MCI to AD. 

2. Methods 

2.1. Database 

Data used in the preparation of this article were obtained from

the ADNI database ( adni.loni.usc.edu ). The ADNI was launched in

2003 as a public-private partnership, led by Principal Investigator

Michael W. Weiner, MD. The primary goal of ADNI has been to test

whether serial magnetic resonance imaging (MRI), PET, other bi-

ological markers, and clinical and neuropsychological assessment

can be combined to measure the progression of mild cognitive

impairment (MCI) and early AD. For up-to-date information, see

www.adni-info.org . This study was registered under clinicaltri-

als.gov under ClinicalTrials.gov Identifier: NCT00106899. The study

was conducted across multiple clinical sites and was approved by

the Institutional Review Boards of all of the participating institu-

tions. Informed written consent was obtained from all participants

at each site. The following individual ethics boards approved the

study: Albany Medical College Institutional Review Board, Boston

University Medical Campus Institutional Review Board (BU IRB),

Butler Hospital Institutional Review Board, Cleveland Clinic In-

stitutional Review Board, Columbia University Institutional Re-

view Board, Dartmouth-Hitchcock Medical Center Committee for

the Protection of Human Subjects, Duke University Health Sys-

tem Institutional Review Board, Emory University Institutional Re-

view Board Georgetown University Institutional Review Board, Hu-

man Investigation Committee Yale University School of Medicine,

Human Subjects Committee, University of Kansas Medical Cen-

ter, Indiana University Institutional Review Board, Research Com-

pliance Administration, Institutional Review Board of Baylor Col-

lege of Medicine, Institutional Review Board of the Mount Sinai

School of Medicine, Johns Hopkins University School of Medicine

Institutional Review Boards, Lifespan—Rhode Island Hospital In-

stitutional Review Board, Mayo Clinic Institutional Review Board,

Nathan Kline Institute Rockland Psychiatric Center Institutional Re-

view Board (NKI RPC IRB), New York University Langone Med-

ical Center School of Medicine, Institutional Review Board Hu-

man Research Program, Northwestern University Institutional Re-

view Board Office, Office of the Washington University School of

Medicine IRB (OWUMC IRB), Oregon Health and Science Univer-

sity Institutional Review Board, Partners Human Research Com-

mittee, Research Ethics Board Jewish General Hospital, Research

Ethics Board Sunnybrook Health Sciences Centre, Roper St. Fran-

cis Institutional Review Board, Rush University Medical Center In-

stitutional Review Board, Stanford University, Administrative Panel

on Human Subjects in Medical Research, The Ohio State Univer-

sity Institutional Review Board, The University of Texas South-

western Medical Center Institutional Review Board, UCLA Office

of the Human Research Protection Program Institutional Review

Board, UCSD Human Research Protections Program, University Hos-

pitals Case Medical Center Institutional Review Board, University

of Alabama at Birmingham Institutional Review Board, University

of British Columbia, Clinical Research Ethics Board (CREB), Uni-

versity of California Davis Office of Research IRB Administration,

University of California Irvine Office Of Research Institutional Re-

view Board (IRB), University of California San Francisco Commit-

tee on Human Research (CHR), University of Iowa Institutional Re-

view Board, University of Kentucky Office of Research Integrity,

University of Michigan Medical School Institutional Review Board

(IRBMED), University of Pennsylvania Institutional Review Board,

University of Pittsburgh Institutional Review Board, University of

http://adni.loni.usc.edu
http://www.adni-info.org
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Rochester Research Subjects Review Board (RSRB), University of

South Florida Division of Research Integrity and Compliance, Uni-

versity of Southern California Health Science Campus Institutional

Review Board, University of Western Ontario Research Ethics Board

for Health Sciences Research Involving Human Subjects (HSREB),

University of Wisconsin Health Sciences Institutional Review Board,

Wake Forest University Institutional Review Board, Weill Cornell

Medical College Institutional Review Board, Western Institutional

Review Board and Western University Health Sciences Research

Ethics Board. Data used for the analyses presented here were ac-

cessed on December 15, 2021. ADNI ID numbers for all subjects in

the study are available in Supplemental Table 1. 

2.2. Clinical diagnosis 

Subjects in this study were drawn from ADNI-GO and ADNI-

2, and details can be found at (ADNI-GO: http://adni.loni.

usc.edu/wp-content/uploads/2008/07/ADNI _ GO _ Procedures _ 

Manual _ 06102011.pdf , ADNI-2: http://adni.loni.usc.edu/

wp- content/uploads/2008/07/adni2- procedures-manual.pdf ). Entry

criteria stipulate that subjects range from age 55–90 years in age,

have a Hachinski score less than or equal to 4 and a Geriatric

Depression Scale score less than 6. As described in Aisen et al.

( Aisen et al., 2015 ), early MCI (EMCI) patients had a memory

complaint, an abnormal score on the Logical Memory II subscale

from the Wechsler Memory Scale-revised, with a score of 9–11

with 16 years of education, 5–9 with 8–15 years of education or

3–6 with 0–7 years of education (corresponding to a Z score of

approximately -1.0). Those with late MCI (LMCI) had correspond-

ing Logical Memory II subscale scores of ≤8, ≤4 or ≤2 (based on

education level, corresponding to a Z score of approximately -1.5).

All MCI subjects had MMSE scores between 24-30 and a Clinical

Dementia Rating scale score of 0.5. AD subjects had similar entry

criteria as LMCI, but had MMSE scores between 20 and 26 (inclu-

sive) and CDR scores of 0.5 or 1.0 and met NINCDS/ADRDA criteria

for probable AD ( McKhann et al., 1984 ). Subjects with subjective

memory complaints (SMC) had a memory complaint and a score

of 16 or greater on the first 12 questions on the cognitive change

index. Normal subjects (NL) did not have a memory complaint,

had education-adjusted scores on Logical Memory Testing of ≥9,

≥5, or ≥3 (per above) and had a Clinical Dementia Rating scale

score of zero. 

2.3. ADNI proteomics analysis of CSF by mass spectrometry 

CSF was obtained at baseline for all subjects in this study.

As described in ADNI study document from Watson, Seyfried,

and Levey ( Watson et al., 2021 ), a subset of CSF samples from

ADNI cohort using targeted proteomics by mass spectrome-

try were obtained for 6 protein targets (Chitinase 3 Like 1

[CHI3L1.IASNTQSR], Neuronal Pentraxin-2 [NPTX2.VAELEDEK],

Osteopontin [SPP1.QETLPSK and SPP1.GDSVVYGLR], VGF

[VGF.EPVAGDAVPGPK], and 14-3-3 protein zeta/delta [YW-

HAZ.VVSSIEQK]). These 6 peptides were previously identified

by integrative proteomics as brain-based CSF biomarkers and

reported to change in patients with AD ( Higginbotham et al.,

2020 ). CSF proteins were reduced, alkylated, denatured, and enzy-

matically digested with Lys-C and trypsin (1:100 enzyme:protein

ratio) and analyzed as a single replicate over 9 days using a

standard flow Agilent 1290 Infinity II liquid chromatography

system coupled with Thermo Fischer Scientific TSQ Altis Triple

Quadrupole mass spectrometer at Emory University School of

Medicine ( Watson et al., 2021 ). Total area ratios are reported for

each peptide. 
To confirm the relationship between depressed VGF levels

and conversion from MCI to AD in subjects with normal ra-

tios of t-tau to A β1-42, we examined levels of a VGF pep-

tide (VGF_NSEPQDEGELFQGVDPR) in an independent cohort from

the ADNI dataset. This peptide was measured using multi-

ple reaction monitoring (MRM) mass spectrometry. Please see

( Devanarayan et al., 2019 ) for details. 

2.4. ADNI CSF GAP-43 

GAP-43 in CSF samples was analyzed using enzyme-linked im-

munoassay. The GAP-43 analyses were performed at the Clinical

Neurochemistry Lab by a board-certified laboratory technician at

the University of Gothenburg, Sweden. Mouse monoclonal GAP-43

antibody NM3 (coating antibody) and a polyclonal GAP-43 anti-

body (detector antibody) were used to recognize the C-terminal of

GAP-43. A total of 18 ELISA plates were analyzed with an assay

range of 312 – 20,0 0 0 pg/mL in 4 analytical runs to result in 1268

data points ( Sandelius et al., 2019 ). 

2.5. Data analysis 

2.5.1. Univariate data analysis 

Significance of each of the markers in relation to disease state

(NL vs. SMC vs. EMCI vs. LMCI vs. AD) was assessed within the

framework of analysis of covariance after adjusting for age, gender,

body mass index (BMI), and education as covariates. All markers

were log transformed, and multiplicity adjustments for the com-

parison of disease states to NL were made via Dunnet’s method.

Similar analysis method was also applied for assessing the asso-

ciation of each of these markers at baseline with the subsequent

36-month progression of the EMCI and LMCI subjects to AD. 

2.5.2. Multivariate data analysis 

The predictive modeling to derive signatures based on these

markers to classify the cognitively unimpaired (CUI; NL + SMC)

subjects and AD subjects was carried via different machine-

learning algorithms such as Resampled Logistic Lasso (RLL),

Bayesian Elastic Net (BEN), Regularized Random Forests (RRF) and

Stochastic Gradient Boosting (SGB). RLL and BEN assume linear re-

lationships of the markers with the disease state odds, whereas

RRF and SBG are tree-based ensemble methods that take into

consideration of any inherent nonlinear relationships between the

markers versus disease state odds and their interactions via a data-

driven manner (not requiring specification of the specific relation-

ships and interactions). Performance of the signatures derived from

these algorithms for accurately classifying CUI versus AD subjects

was estimated via 10 iterations of 10-fold stratified cross-validation

(see details in ( Devanarayan et al., 2019 )). 

As the signatures from SGB outperformed the signatures from

the other algorithms based on this cross-validation, results from

only the SGB are reported in this paper. These signatures were

then applied to an independent group of EMCI and LMCI sub-

jects at baseline to predict their future progression to AD within

36-months. The EMCI and LCMI subjects that were predicted at

baseline to be AD-like (called “Signature Positive”) were consid-

ered as future converters to AD, and those predicted to be NL-like

(called “Signature Negative”) were considered as non-converters.

These baseline predictions of the MCI subjects were then com-

pared to the follow-up clinical data. Performance metrics such as

the sensitivity, specificity and balanced accuracy were calculated

by comparing the predictions to the known progression status of

the MCI subjects to AD over the next 36-months. 

These multivariate signatures were then evaluated for their

ability to differentiate the future time to progression of the EMCI

http://adni.loni.usc.edu/wp-content/uploads/2008/07/ADNI_GO_Procedures_Manual_06102011.pdf
http://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-manual.pdf
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Fig. 1. Predictive modeling flow scheme for deriving multivariate signatures of disease diagnosis and prognostic prediction of MCI to AD progression. (For interpretation of 

the references to color in this figure legend, the reader is referred to the Web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and LMCI subjects to AD. This was accomplished by comparing the

time to AD progression of the predicted signature positive EMCI

and LMCI subjects at baseline (i.e., the EMCI and LMCI subjects

that were predicted to be AD-like at baseline) versus the predicted

signature negative EMCI and LMCI subjects at baseline via Kaplan-

Meier analysis. For this evaluation, the progression to AD over the

future time course until the last follow-up visit (up to 120 months)

was taken into consideration. This analysis procedure to derive an

optimal signature for disease state differentiation and prediction of

future progression of MCI subjects to AD was carried out separately

for the following subsets of markers, along with APOE genetic sta-

tus, age, gender, and education: 

- AT 

- 6 N proteins or peptides 

- AT + all 6 N proteins or peptides 

- AT + each of the 6 proteins or peptides 

The optimal signature derived for each of the above scenarios

from the machine-learning algorithms would include one or more

of the markers from these scenarios. Please see Fig. 1 for a diagram

depicting the analysis flow scheme. 

As explained in ( Devanarayan et al., 2019 ), while it is not nec-

essary for a signature that differentiates AD versus CUI subjects to

predict the progression of EMCI and LMCI subjects to AD, it is im-

portant that a signature that predicts disease progression to also

be relevant for disease diagnosis as it would better reflect the AD

pathology. Most importantly, this evaluation of the AD versus CUI

signature on the MCI subjects at baseline to predict their future

progression to AD not only served as an independent verification of

the utility of the identified signatures, but also put it to a greater

test to see whether it could address a different question related

to the prognostic prediction of future progression of MCI subjects.

All analyses related to predictive modeling and signature deriva-

tion were carried out using R ( http://www.R-project.org ), version

4.1.1. 

3. Results 

3.1. Demographics 

Data from 719 subjects across NL, SMC, EMCI, LMCI, and AD

were included in this study and their key demographic variables

(gender, ApoE4 status, age, education, BMI and MMSE) are shown
in Table 1 . All of these characteristics were significantly differ-

ent across two or more of these groups (in all cases p < 0.05,

Kruskal-Wallis test used for age, education, BMI and MMSE, and

Chi-Squared test used for gender and ApoE4 status). Age was not

significantly different between CUI and AD. All demographic vari-

ables, except ApoE and MMSE, were adjusted for in the univari-

ate analysis of the ATN markers as described above. Table 2 con-

tains demographic variables for individuals in the two MCI groups

(EMCI and LMCI), separated by whether they remained stable over

36-months, or converted to AD. As shown, significant predictors of

conversion over 36 months were ApoE4 status (EMCI: p < 0.0 0 01,

LMCI: p = 0.0015, Chi-Squared) and MMSE for the LMCI group

(EMCI: p = 0.132, LMCI: p < 0.0 0 01, Wilcoxon rank sum test). 

3.2. Correlations between the ATN markers 

Spearman correlations between levels of A, T and putative N

markers were examined. As expected, CSF A β1-42 levels were in-

versely correlated with total tau (t-tau, ρ = -0.474, p < 0.0 0 01)

and phospho-tau 181 (p-tau, ρ = -0.474, p < 0.0 0 01) levels ( Fig. 2 ).

Among the putative N markers, the strongest correlations were

seen between the 2 SPP species ( ρ = 0.832, p < 0.0 0 01), as well as

NPTX2 and VGF ( ρ = 0.741, p < 0.0 0 01). GAP-43 and YWHAZ also

strongly correlated with each other ( ρ = 0.631, p < 0.0 0 01) as well

as t-tau (correlation coefficients = 0.745 and 0.715, respectively,

both p < 0.0 0 01), as has been previously reported ( Sjögren et al.,

2001 ; Sjögren et al., 2000 ; Zhou et al., 2020 ), suggesting that these

two markers may serve as general indicators of neuronal dam-

age. In addition, VGF and NPTX2-derived peptides had relatively

low correlations with A β1-42 and p-tau ( ρ values ranging from

0.164 to 0.282) suggesting that these may add more complemen-

tary value when combined with AT than the other markers. 

3.3. CSF ATN markers across diagnostic categories 

As expected, AT markers varied across diagnostic categories, as

shown in Fig. 3 . When compared to CUIs, all cognitively impaired

groups (EMCI, LMCI, and AD) had lower CSF A β1-42 levels, higher

p-tau and t-tau levels and higher ratios of both p-tau/A β1-42 and

t-tau/A β1-42 ( p < 0.0 0 01 across all categories). Differences relative

to CUI were progressively greater for EMCI, LMCI, and AD subjects,

http://www.R-project.org
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Table 1 

Demographics and related information on subjects from different control and disease states. 

NL SMC EMCI LMCI AD p -value 

Number of subjects (n) 142 83 240 141 113 

Gender (n) F 75 51 108 65 45 0.0217 

M 67 32 132 76 68 

ApoE (n) non-E4 106 55 137 59 38 < 0.0001 

E4 36 28 103 82 75 

Age; years, Mean (SD) 73.5 (6.3) 72.3 (5.6) 70.7 (7.5) 71.9 (7.6) 74.3 (8.3) < 0.0001 ∗

Education; years, Mean (SD) 16.6 (2.5) 16.6 (2.5) 16.0 (2.6) 16.7 (2.6) 15.7 (2.7) 0.0033 

BMI; Mean (SD) 27.3 (4.4) 28.2 (5.8) 28.2 (5.3) 27.2 (4.8) 26.0 (5.1) 0.0014 

MMSE; Mean (SD) 29.1 (1.2) 29.0 (1.1) 28.4 (1.6) 27.6 (1.9) 23.2 (2.0) < 0.0001 

Table 2 

demographics and related baseline information on EMCI and LMCI subjects, stratified by their conversion status to AD over 36 months. 

EMCI LMCI p-value (Stable vs. Conversion) 

Stable Converter Stable Converter EMCI LMCI 

Number of subjects (n) 168 19 63 56 

Gender (n) F 75 5 28 26 0.1168 0.8282 

M 93 14 35 30 

ApoE (n) non-E4 104 3 36 16 < 0.0001 0.0015 

E4 64 16 27 40 

Age; years, Mean (SD) 70.1 (7.3) 73.2 (6.1) 71.7 (8.1) 71.9 (7.4) 0.0449 0.6547 

Education; years, Mean (SD) 16.1 (2.6) 15.7 (2.4) 17.2 (2.2) 16.4 (2.7) 0.6462 0.0991 

BMI; Mean (SD) 28.3 (5.7) 28.2 (4.9) 27.2 (3.7) 27.4 (5.7) 0.8915 0.3234 

MMSE; Mean (SD) 28.6 (1.5) 28.0 (1.8) 28.2 (1.6) 26.7 (1.7) 0.132 < 0.0001 

Fig. 2. Correlation heatmap of the A, T and N markers considered in this study, 

that are clustered based on their pairwise spearman correlation. As expected, the 

AT markers cluster closer together, followed by a group of N markers (CHI3L1, GAP- 

43, YWHAZ) with ρ = 0.519 to 0.631 pairwise correlation, the 2 peptide sequences 

of SPP1 with ρ = 0.832 correlation, and finally, NPTX2 and VGF clustered with 

ρ = 0.741 correlation. (For interpretation of the references to color in this figure 

legend, the reader is referred to the Web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

scaling with severity of cognitive loss defining a diagnostic cate-

gory. 

Fig. 4 shows CSF levels of the 6 putative neurodegeneration

markers examined in this study. As predicted from the correla-

tion matrix shown in Fig. 2 , CHI3L1, both species of SPP1, YWHAZ,

and GAP-43 levels increased in the CSF with increased pathology,

while both VGF and NPTX2 decreased. After adjusting for demo-

graphic factors, all markers varied significantly across the diagnos-

tic groups ( p < 0.001). In general, the differences across diagnos-

tic categories among the putative neurodegeneration markers were

less stark than those seen among AT markers ( Fig. 3 ). However,
what is not clear from Fig. 4 is whether these markers indepen-

dently differentiate diagnostic categories or are redundant with AT

markers, which will be addressed below. 

3.4. CSF ATN markers as predictors of MCI to AD conversion 

Fig. 5 illustrates that, as expected, low A β1–42 levels, high CSF

t-tau or p-tau levels, or high ratios of either tau species to A β1-

42, predict MCI to AD conversion over a 36-month period. These

differences were significant for both EMCI and LMCI across all AT

markers with p < 0.001. Fig. 6 shows baseline CSF levels of pu-

tative neurodegeneration markers in EMCI and LMCI subjects that

either convert or do not convert to AD over a 36-month period.

CSF CHI3L1, both species of SPP1, GAP-43 and YWHAZ levels were

all higher in subjects that converted to AD over a 36-month pe-

riod, and all were significant at p < 0.05 level. NPTX2 levels were

significantly ( p < 0.05) lower in converters, while VGF levels were

not significantly different, but trended lower in converters. Further

analysis of VGF levels after stratifying subjects using a previously

published cutoff value for the ratio of t-tau to A β1-42 of 0.59

( Devanarayan et al., 2019 ) shows that in subjects with low ratios

(i.e., normal AT markers), VGF levels are lower in MCI that con-

verted to AD ( p = 0.0 0 04, Fig. 7 A). Given the small number of sub-

jects that converted from MCI to AD with a low t-tau/ A β1-42 ratio

(n = 17), we have examined these relationships in an independent

cohort, also from the ADNI dataset. Here, a different peptide frag-

ment from VGF was measured (VGF_NSEPQDEGELFQGVDPR) and

was found to have significantly lower levels in CSF of MCI to AD

converters that had normal t-tau/ A β1-42 ratios (n = 20 convert-

ers, p = 0.026, Fig. 7 B). Thus, across two independent cohorts, us-

ing two different fragments of VGF, these data suggest that VGF

levels may be predictive of conversion to dementia in with neg-

ative AT biomarkers. Although these subjects did not have sub-

sequent CSF analysis to determine if AT biomarkers converted to

positive, 6 subjects in the first cohort had follow-up amyloid-PET

scans. Four out of these 6 subjects had negative follow-up amyloid

PET scans, suggesting that they may not have had AD despite a

clinical diagnosis of AD. These data suggest that low CSF VGF may
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Fig. 3. Plot of the distribution of AT markers versus the diagnostic groups (age-matched normal control, CN; subjective memory complaints, SMC; early and late mild 

cognitive impairment, EMC and LMC; Alzheimer’s disease, AD). Data are plotted in log2 scale as the markers are lognormally distributed. Because the markers are not 

significantly different between the CN and SMC groups, they are combined as a cognitively unimpaired (CUI) group. All markers are significantly different between the CUI 

and the other groups combined and also specifically versus AD ( p < 0.0 0 01), after adjusting for demographic features. (For interpretation of the references to color in this 

figure legend, the reader is referred to the Web version of this article.) 

Fig. 4. Plot of the distribution of the 6 neurodegeneration (N) markers across different diagnostic groups. These markers are specific peptide sequence from each of 4 

proteins (CHI3L1, NPTX2, VGF, YWHAZ), two peptide sequences from SPP1, and the full protein form of GAP-43. For all short peptides, data are reported as total area ratios, 

and are thus unitless. Data are plotted in log2 scale as the distributions are lognormally distributed. All markers are significantly different across the groups ( p < 0.001), 

after adjusting for demographic features. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

be a general marker of neurodegenerative disease, as addressed in

the Discussion. Future work using longitudinal sampling of CSF will

determine if VGF changes do indeed precede AT changes in sub-

jects that will develop clinical AD. 

3.5. Combining CSF ATN markers as markers of disease state and 

markers to predict MCI to AD conversion 

A + T + putative N markers were compared in terms of their

ability to differentiate CUI subjects from those with AD. Of the

various ATN marker combinations, AT + VGF and AT + NPTX2 pro-

duced the highest balanced accuracy (BA, BA in each = 85.4%, See

Table 3 ). We then used the markers optimized for differentiating

disease state on an independent group of patients with either EMCI

or LMCI to predict their conversion to AD over a 36-month pe-

riod, allowing a head-to-head comparison of all A + T + N com-
binations ( Table 3 ). The addition of VGF to AT markers signifi-

cantly increased the prediction accuracy of conversion in EMCI

subjects (from 66.5% to 76.5%, p = 0.0012), consistent with the

findings in Fig. 7 , which suggest that a low VGF level in CSF

is an early predictor of cognitive decline. In the LMCI group,

VGF, NPTX2, and YWHAZ, when combined with AT markers, pre-

dicted conversion to AD beyond the ability of AT markers alone,

with VGF showing the greatest improvement (from 71.6% to 81.1%,

p = 0.0014). Combining all biomarkers together (all species of

amyloid, tau and all 6 putative biomarkers) irrespective of cate-

gory did not improve the ability to predict MCI to AD conversion

( p > 0.05). 

Given the findings above that VGF, over a 3-year period, showed

the greatest capacity in the ATN context to predict MCI to AD con-

version, we examined the capacity of VGF, when combined with

AT markers, to predict the time for MCI to AD conversion over a
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Fig. 5. Plot of the distribution of AT markers at baseline versus the 36-month future progression status of subjects that were diagnosed as either early or late mild cognitive 

impairment (EMCI, LMCI) at baseline. Data are plotted in log2 scale as the markers are lognormally distributed. All markers are significantly associated with the future 

progression of both EMCI and LMCI subjects ( ∗∗ denotes p < 0.001), after adjusting for demographic features. (For interpretation of the references to color in this figure 

legend, the reader is referred to the Web version of this article.) 

Fig. 6. Plot of the distribution of AT markers at baseline versus the 36-month future progression status of subjects that were diagnosed as either early or late mild cognitive 

impairment (EMCI, LMCI) at baseline. For all short peptides, data are reported as total area ratios, and are thus unitless. Data are plotted in log2 scale as the markers are 

lognormally distributed. All markers, except the VGF peptide, are significantly associated on their own with the future progression of either EMCI or LMCI subjects ( ∗ denotes 

p < 0.05), after adjusting for demographic features. However, as shown later in further analyses, VGF in combination with AT markers is significantly associated with MCI 

progression. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10-year period using an analysis of non-progression over time. Us-

ing optimized markers for AT alone produced hazard ratios (HR) of

4.4 and 4.11 for EMCI to AD or LMCI to AD conversion, respectively

( Fig. 8 , top). Combining VGF with all AT markers increased the HRs

to 6.7 and 9.88 for EMCI to AD ( p = 0.084) or LMCI to AD conver-

sion ( p = 0.0018), respectively ( Fig. 8 , bottom). Consistent with the

3-year data shown in Table, 3, combining all biomarkers together

did not improve the ability to predict MCI to AD conversion ( p >

0.05). 
Review of the relative influence of each feature within the

A + T + VGF signature (initially defined to discriminate between

AD and CUI) revealed that t-tau/A β42 ratio accounted for 52.3%

of the influence with the next most important feature being VGF

(21.5%, Fig. 9 A). Analysis of the relationship between these two

markers, indexed against the probability of MCI to AD conversion

shows that: (1) the highest rate of conversion is seen when VGF

levels are low and t-tau/A β1-42 levels are intermediate (yellow

patch at bottom of the figure) and that (2) when t-tau/A β1-42 lev-
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Fig. 7. (A) Association of VGF peptide with the progression of MCI subjects to AD is shown here for subjects with different levels of t-tau to A β1-42 ratio, especially in 

relation to a cut-point of 0.59 that has been reported as optimal for predicting MCI to AD progression ( Llano et al., 2019 ). At t-tau to A β1-42 ratios lower than 0.59 (i.e., 

normal ratios), low levels were significantly associated with MCI to AD conversion (B) Identical analysis performed on a separate cohort from the ADNI database using a 

different peptide fragment from VGF (VGF_ NSEPQDEGELFQGVDPR, ∗ denotes p < 0.05, ∗∗ denotes p = 0.005). (For interpretation of the references to color in this figure 

legend, the reader is referred to the Web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

els are very high (rightmost portion of the plot), VGF levels are also

relatively high and rates of MCI to AD conversion are low. The lat-

ter finding suggests that high levels of VGF in CSF may be a marker

of neuroprotection to mitigate what would otherwise be strong in-

dicator of MCI to AD progression. 

4. Discussion 

In the current study, we used machine-learning algorithms to

derive optimal ATN signatures to distinguish AD from CUI in-

dividuals using combinations of CSF levels of A β1-42, t-tau, p-

tau and their ratios, and peptides derived from a range of pro-

teins involved in both synaptic function and inflammation. We

examined the capacity for combinations of these signatures, us-

ing the ATN framework, to predict the conversion of an inde-

pendent group of patients with MCI to develop AD over a 36-

month and a 10-year period. We found that adding putative mark-

ers of neurodegeneration (“N” in the ATN framework) to A β and

tau species (“AT”) enhanced the prediction of conversion from

MCI to AD by nearly two-fold. The N marker with the most

predictive power, when combined with AT, was depressed lev-

els of VGF in the CSF, which is a marker of synaptic function

and plasticity. The implications of these results are discussed

below. 

4.1. Connection to previous work 

Several CSF markers have been identified that, when coupled

to changes in A β and tau or phosphorylated tau, enhance predic-

tion of conversion from MCI to AD. For example, we reported that

VGF-derived peptides, in combination with conventional biomark-

ers, significantly increased the ability to predict MCI to AD conver-

sion ( Llano et al., 2017 ; Llano et al., 2019 ). It is notable that the

specific peptide fragments in marker in those cases were different

than the 1 used in this study, and was done on an entirely differ-

ent group of subjects. These findings support the notion that the

findings regarding VGF are not related to a specific peptide in a

particular subject pool, but to the parent protein (VGF) and are

generalizable to the broader population. These findings are con-

sistent with multiple other studies that observed declines in CSF
VGF levels in AD subjects ( Carrette et al., 2003 ; Hendrickson et al.,

2015 ; Hölttä et al., 2014 ; Jahn et al., 2011 ; Selle et al., 2005 ). An

additional peptide, neuronal protein tyrosine phosphatase receptor

type N (PTPRN), may also have predictive power. For example, in

a previous study from our group, a CSF peptide derived from PT-

PRN, when combined with AT markers and hippocampal volume,

enhanced prediction of MCI to AD conversion ( Devanarayan et al.,

2019 ). 

Other work using total tau as an N marker also showed that

combining CSF AT markers with t-tau as a marker of neurode-

generation enhanced prediction of cognitive decline over time

( Allegri et al., 2020 ; Delmotte et al., 2021 ). We should note that

in the current study, t-tau was not used as a marker for neurode-

generation, but instead was incorporated into the tau (“T”) cat-

egory of markers. We did not explicitly test models where only

p-tau was used as T and t-tau was used as N. However, because

the signatures were entirely data-driven, our finding that AT + VGF

outperformed AT alone demonstrates that using VGF as N outper-

forms any signature using t-tau as N because all combinations of

AT markers were considered. 

4.2. Biological implications of the markers examined in this study 

We found that multiple peptides could differentiate between

AD, MCI and control subjects ( Fig. 4 ). The parent proteins from

these peptides have been implicated in a host of functions re-

lated to synaptic physiology and plasticity as well as neural in-

flammation. For example, 2 markers of neuroinflammation: SPP1

and CHI3L1, were examined in this study. Osteopontin (OPN), re-

ferred to in the current study as SPP1 (secreted phosphoprotein 1),

is an extracellular phosphoprotein expressed in response to stress

and injury ( Chai et al., 2021 ; Frigerio et al., 2019 ). There is an

emerging literature implicating brain inflammation with AD. For

example, recent work has reported co-localization of activated mi-

croglia and astrocytes with amyloid plaques in AD ( Arends et al.,

20 0 0 ), together with elevated levels of pro-inflammatory cytokines

in CSF ( Llano et al., 2012 ). In addition, several studies have revealed

that brain and/or CSF samples obtained from AD patients contain

higher OPN levels than controls ( Chai et al., 2021 ; Comi et al.,

2010 ; Sun et al., 2013 ). An additional marker of neural inflamma-
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Fig. 8. Top row shows the Kaplan-Meier plots of the time to progression from MCI to AD which reveal considerably faster progression of the EMCI and LMCI subjects 

(“signature positive”) that were predicted at baseline as faster progressors to AD during the 10-year clinical follow-up using AT only markers. Bottom row shows similar 

plots for AT markers + VGF. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tion examined in this study is Chitinase 3-like 1 (CHI3L1). CHI3L1

is a secreted glycoprotein, and its parent gene is expressed in

microglia and astrocytes in association with neuroinflammation

( Sanfilippo et al., 2019 ). Its role remains unknown, but several

studies have found an association of CHI3L1 with several inflam-

matory diseases, and it has been found to be a marker of neuroin-

flammation in AD ( Moreno-Rodriguez et al., 2020 ; Sanfilippo et al.,

2019 ). CHI3L1 expression is found in astrocytes situated near blood

vessels as well as the neuropathological hallmarks of AD: A β
plaques, and neurofibrillary tangles ( Bonneh-Barkay et al., 2010 ).

Recent work also showed that CHI3L1-positive astrocytes were sig-

nificantly increased in frontal cortex and white matter in severe

AD ( Moreno-Rodriguez et al., 2020 ) and that elevated levels are

present in the CSF of AD subjects ( Zhang et al., 2018 ). 

In addition, the levels of several markers of synaptic function

were found in the current study to be altered in AD and predic-

tive of MCI to AD conversion. The parent protein for YWHAZ is

a 14-3-3 protein encoded by the YWHA family of genes (YWHAE,

YWHAZ, and YWHAQ). 14-3-3 zeta protein isoform 1 (YWHAZ) is

a regulatory protein that is associated with tau phosphorylation in

neurofibrillary tangles in AD ( Kim et al., 2015 ; Yang et al., 2020 ).
YWHAZ protein expression is reduced in the hippocampus of AD

patients ( Kim et al., 2015 ) and increased levels have been reported

in the CSF of AD patients ( Bader et al., 2020 ; Zhou et al., 2020 ).

CSF GAP-43 levels were also found in the current study to be el-

evated in the CSF of AD patients and were predictive of MCI to

AD conversion. GAP-43 is a synaptic protein found in presynap-

tic terminals and important for neuronal development and synap-

togenesis ( Sandelius et al., 2019 ). Thus, the current study ex-

tends and confirms previous work that reported GAP-43 to be el-

evated in CSF in the presence of AD pathology ( Milà-Alomà et al.,

2021 ; Remnestål et al., 2016 ; Sandelius et al., 2019 ; Tible et al.,

2020 ). 

NPTX2 was found to independently contribute to prediction of

MCI to AD conversion when combined with AT, suggesting that

it may serve as a neurodegeneration marker in the ATN frame-

work. NPTX2 is a secreted glycoprotein and is likely involved in

AMPA-mediated excitatory synapse assembly. Regulation of the

trafficking of AMPA receptors is essential for synaptic plasticity,

and NPTX2 has been associated with AMPA-mediated excitatory

synaptogenesis ( Chapman et al., 2020 ; Libiger et al., 2021 ). Pre-

vious work reported decreases NPTX2 in brain and CSF of MCI
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and AD subjects ( Libiger et al., 2021 ; Xiao et al., 2017 ), and that

CSF levels can predict cognitive decline ( Galasko et al., 2019 ;

Swanson et al., 2016 ). Previous work has also shown that CSF

levels decrease more rapidly in progressors than nonprogressors

and these declines also correlated with declines in cognitive func-

tion, as measured using the MMSE or ADAS-Cog13 ( Libiger et al.,

2021 ). 

4.3. VGF levels in the ATN framework predict MCI to AD conversion 

Of the peptides examined in the current study, low VGF levels

in the CSF were found to most strongly predict MCI to AD con-

version in the ATN framework. In addition, low VGF levels in the

CSF were predictive of MCI conversion, even in the presence of a

normal ratio of t-tau to A β42, as shown using 2 independent co-

horts from the ADNI database and 2 different peptide fragments

from VGF ( Fig. 7 ). The finding that a minority of these subjects

with negative AT biomarkers that converted to clinical AD devel-

oped positive amyloid PET scans suggests that these subjects may

not have had amyloid deposition, consistent with the finding that

low CSF VGF can be found in non-AD dementia ( Rüetschi et al.,

2005 ; van Steenoven et al., 2019 ). In addition, the relationship be-

tween VGF and MCI to AD conversion is not straightforward, as

evidenced by the fact that univariate analysis of VGF levels in MCI

subjects was not predictive of AD conversion ( Fig. 7 ). In contrast,

when used in conjunction with AT markers, VGF becomes highly

predictive ( Fig. 8 ). These data likely derive from the complex re-

lationship between these markers and AD conversion shown in

Fig. 9 B. It is clear that low VGF levels on their own are not pre-

dictive of conversion (lower left of 9B). However, low levels of VGF

in the presence of abnormal t-tau/A β42 ratios is highly predic-

tive, consistent with the Kaplan-Meier plots shown in Fig. 8 . These

data point to the need to perform multivariate analyses of multiple

markers, rather than relying on individual markers to predict MCI

to AD conversion. 

VGF is a widely distributed neuronal protein ( Alder et al., 2003 ;

Cocco et al., 2010 ; Snyder and Salton, 1998 ) whose levels are up-

regulated by neuronal activity ( Snyder et al., 1997 ). VGF is im-

portant for expression of synaptic plasticity and neurogenesis, as

shown in animal models ( Alder et al., 2003 ; Bozdagi et al., 2008 ;

Thakker-Varia et al., 2014 ; Thakker-Varia et al., 2007 ). Overex-

pression of VGF can protect against AD pathology, which is con-

sistent with the current data suggesting that its levels are low-

ered in AD subjects and MCI subjects that will later convert to

AD ( Fig. 7 ) and that high levels may mitigate the impact of hav-

ing strongly positive AT markers ( Fig. 9 B). Multiple recent studies

have implicated VGF in the pathogenesis of AD ( Beckmann et al.,

2020 ; El Gaamouch et al., 2020 ; Llano et al., 2017 ; Llano et al.,

2019 ), reviewed in ( Quinn et al., 2021 ). It is unlikely that the drop

in VGF levels in the CSF in the current study represents a shift

to parenchymal accumulation, because low levels are seen in the

cerebral cortex of AD subjects ( Cocco et al., 2010 ) and because

low VGF CSF levels are seen in other neurodegenerative diseases

such as frontotemporal dementia and dementia with Lewy bod-

ies ( Rüetschi et al., 2005 ; van Steenoven et al., 2019 ), suggesting

that low CSF levels are a sign of neuronal loss. Given that de-

pressed CSF levels are seen in other neuropathological states be-

sides AD, it is possible that the low VGF levels in this study may

have been related to other disease states, consistent with the vari-

able specificity for AD found with clinical diagnosis ( Beach et al.,

2012 ; Franklin et al., 2015 ; Kim et al., 2020 ; Sabbagh et al., 2017 ). 

It is worth noting that although the ATN framework pro-

vides an intuitive method for grouping putative biomarkers, not

all biomarkers easily fit into these 3 bins. For example, mark-

ers of inflammation or disrupted metabolism do not involve pri-
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Fig. 9. (A) The relative influence plot of the predictors in this signature reveals that VGF is a valuable contributor to the prediction when combined with the ratio of t-tau to 

A β1-42. (B) The interaction prediction profile, where the color gradient from blue to green to yellow represents increasing likelihood of progression from MCI to AD, reveals 

a strong dependence between VGF and the ratio of t-tau to A β1-42, with the lower levels of VGF along with higher ratio of t-tau to A β1-42 at baseline resulting in greater 

likelihood of future progression from MCI to AD. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mary pathology of amyloid, tau, nor are they a direct reflection

of neurodegeneration. For this reason, other frameworks, such as

the ATNX framework have been proposed whereby “X” represents

other pathologies not encompassed by A, T, or N ( Huang et al.,

2022 ). In the current study, in addition to examining biomarkers

within the A, T or putative N groups, we also examined the perfor-

mance of all biomarkers (all species of amyloid beta, tau and all 6

novel markers), regardless of category ( Table 3 ). We found that the

performance of the combined biomarker (which does not rely on

ATN groupings) did not differ in any substantive way compared to

A + T + VGF. These data suggest that an additional “X” category,

chosen from the examined biomarkers, would not have improved

biomarker performance. This finding does not exclude the possi-

bility that other, unmeasured, biomarkers could be combined with

A + T + VGF to improve overall performance in predicting MCI to

AD conversion. 

5. Conclusion 

The current study provides additional evidence that multiple

candidate peptides may serve as markers of neurodegeneration in

the CSF and, when combined with AT markers, VGF most strongly

enhances the ability to predict whether MCI subjects convert to

AD. As such, VGF may serve as an N marker in the ATN frame-

work and may be useful clinically to predict which MCI patients

are most likely to convert to AD, and thus most likely to bene-

fit from aggressive intervention, such as amyloid-lowering therapy.

The use of VGF + AT markers in CSF has the additional advan-

tage of all being obtained as a single patient encounter, without

the need to incorporate expensive imaging testing, which may not

be available in remote areas. In addition, use of CSF AT + VGF levels

in clinical trials may help to select subjects with the fastest rate of

cognitive decline and thus may be used to accelerate the develop-

ment of new therapeutic interventions by shortening clinical trial

time. Future work will help to clarify important questions, such as

the specificity of these markers for AD compared to other neuro-

generative disorders, and whether these markers may themselves
have therapeutic implications (e.g., elevating brain levels of VGF as

a therapeutic intervention). 
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len, E., Wallin, A., Blennow, K., 2001. The cerebrospinal fluid levels of tau,

growth-associated protein-43 and soluble amyloid precursor protein correlate in

Alzheimer’s disease, reflecting a common pathophysiological process. Dementia
and geriatric cognitive disorders 12 (4), 257–264 . 

Sjögren, M., Minthon, L., Davidsson, P.a., Granerus, A.-K., Clarberg, A., Vander-
stichele, H., Vanmechelen, E., Wallin, A., Blennow, K., 20 0 0. CSF levels of tau,

β-amyloid 1–42 and GAP-43 in frontotemporal dementia, other types of de-
mentia and normal aging. J neural transmission 107 (5), 563–579 . 

Snyder, S., Cheng, H.-W., Murray, K., Isackson, P., McNeill, T., Salton, S., 1997. The

messenger RNA encoding VGF, a neuronal peptide precursor, is rapidly regu-
lated in the rat central nervous system by neuronal activity, seizure and lesion.

Neuroscience 82 (1), 7–19 . 
Snyder, S.E., Salton, S.R., 1998. Expression of VGF mRNA in the adult rat central

nervous system. J Comparative Neurol 394 (1), 91–105 . 
Sun, Y., Yin, X.S., Guo, H., Han, R.K., He, R.D., Chi, L.J., 2013. Elevated osteopontin

levels in mild cognitive impairment and Alzheimer’s disease. Mediators of in-

flammation 1–10 2013 . 
Swanson, A., Willette, A., Initiative, A.s.D.N., 2016. Neuronal Pentraxin 2 predicts

medial temporal atrophy and memory decline across the Alzheimer’s disease
spectrum. Brain, behav, and immunity 58, 201–208 . 
Thakker-Varia, S., Behnke, J., Doobin, D., Dalal, V., Thakkar, K., Khadim, F., Wil-

son, E., Palmieri, A., Antila, H., Rantamaki, T., 2014. VGF (TLQP-62)-induced

neurogenesis targets early phase neural progenitor cells in the adult hip-
pocampus and requires glutamate and BDNF signaling. Stem cell res. 12 (3), 

762–777 . 
Thakker-Varia, S., Krol, J.J., Nettleton, J., Bilimoria, P.M., Bangasser, D.A., Shors, T.J.,

Black, I.B., Alder, J., 2007. The neuropeptide VGF produces antidepressant-like
behavioral effects and enhances proliferation in the hippocampus. J. Neurosci.

27 (45), 12156–12167 . 
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